Acta Crystallographica Section E

Structure Reports

 OnlineISSN 1600-5368

Helmut Sitzmann,
 Marc D. Walter and Gotthelf Wolmershäuser*

Fachbereich Chemie, Universität Kaiserslautern, Erwin-Schrödinger-Straße, 67663 Kaiserslautern, Germany

Correspondence e-mail:

wolmersh@chemie.uni-kl.de

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.034$
$w R$ factor $=0.062$
Data-to-parameter ratio $=16.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

Tricarbonyl(methyl) ($\boldsymbol{\eta}^{5}$-1,2,4-tricyclohexylcyclopentadienyl)molybdenum

The title compound, $\left[\mathrm{Mo}\left(\mathrm{CH}_{3}\right)\left(\mathrm{C}_{23} \mathrm{H}_{35}\right)(\mathrm{CO})_{3}\right]$, has been synthesized and characterized by NMR spectroscopy, elemental analysis, and by an X-ray crystal structure investigation.

Comment

The title compound, (I), is the first known half-sandwich complex of the 1,2,4-tricyclohexylcyclopentadienyl ligand. The perpendicular distance of Mo from the five-membered ring plane $[2.0206(15) \AA]$ and all Mo-C distances are comparable to the values found for other tricarbonyl(cyclopentadienyl)methylmolybdenum derivatives (El Mouatassim et al., 1995; Lai et al., 1993; Bell et al., 1988). All cyclohexyl (Cy) substituents exhibit a chair conformation. The angles between the cyclopentadienyl ring plane and one plane for each substituent, defined by the cyclopentadienyl ring atom connected to the ipso-C atom and the two nearest methylene C atoms, are $83.17(13)^{\circ}$ for $1-\mathrm{Cy}$ and $68.27(14)^{\circ}$ for 2-Cy. With these two substituents rotated away from each other, a maximum of space is provided for carbonyl C9-O3. The Cy substituent in the 4-position adopts a dihedral angle of 41.91 (18) ${ }^{\circ}$ with the Cp ring plane, avoiding any close contact with the methyl group bonded to Mo. The absence of steric strain has also been noted for hexa(cyclohexyl)ferrocene, the only other known complex of the 1,2,4-tricyclohexacyclopentadienyl ligand (Burman et al., 1994).

Experimental

A mixture of lithium tricyclohexylcyclopentadienide (637 mg , 2.0 mmol), molybdenum hexacarbonyl ($539 \mathrm{mg}, 2.0 \mathrm{mmol}$), and tetrahydrofuran $(50 \mathrm{ml})$ was stirred at reflux temperature for 5 h and allowed to cool to ambient temperature. Methyl iodide (281 mg , 2.0 mmol) was added and the mixture was heated to reflux temperature for 2 h . The solvent was evaporated and the residue extracted with toluene (30 ml). Evaporation of the filtered toluene solution and recrystallization from hexane-tetrahydrofuran (5:1) at ambient temperature yielded yellow crystalline (I) $(712 \mathrm{mg}$, $1.41 \mathrm{mmol}, 70 \%$). $\mathrm{C}_{27} \mathrm{H}_{38} \mathrm{MoO}_{3}$ ($M_{r}=506.54$), calculated: C $64.02, \mathrm{H}$ 7.56%; found: C 63.31, H 7.64\%. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}, 400.13 \mathrm{MHz}$): 4.75

Received 6 November 2002 Accepted 12 November 2002 Online 30 November 2002

Figure 1
A view of (I) with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
($s, 2 \mathrm{H}$, ring H), 2.11-0.93 (m , cyclohexyl protons), 0.45 p.p.m. ($s, 3 \mathrm{H}$, Mo-methyl). ${ }^{13} \mathrm{C}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}, 100.62 \mathrm{MHz}$): 243.2 (1C, carbonyl), 229.1 (2C, carbonyl), 120.9 ($s, 1 \mathrm{C}$, ring C), 117.3 ($s, 2 \mathrm{C}$, ring C), 86.6 ($d d, 2 \mathrm{C}, J=163 \mathrm{~Hz} / 5 \mathrm{~Hz}$, ring CH), 37.7 (2C, methylene), 36.4 (1C, ipso-CH), 35.7 (2 C , ipso-CH), 35.2 (2C, cyclohexyl), 34.4 (2C, cyclohexyl), 27.1 (2 C , cyclohexyl), 27.0 (2 C , cyclohexyl), 26.5 (2C, cyclohexyl), 26.4 (1 C, cyclohexyl), 26.2 (2C, cyclohexyl), -14.3 p.p.m. (q, $1 \mathrm{C}, J=136 \mathrm{~Hz}, \mathrm{Mo}-$ methyl). C,H coupling constants of cyclohexyl carbon signals could not be determined, because of signal superimposition.

Crystal data

$\left[\mathrm{Mo}\left(\mathrm{CH}_{3}\right)\left(\mathrm{C}_{23} \mathrm{H}_{35}\right)(\mathrm{CO})_{3}\right]$
$M_{r}=506.51$
Monoclinic, $P 2_{1} / n$
$a=10.8664$ (8) A
$b=9.8320$ (5) \AA
$c=23.3279$ (17) A
$\beta=95.838$ (9$)^{\circ}$
$V=2479.4(3) \AA^{3}$
$Z=4$

$$
\begin{aligned}
& D_{x}=1.357 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 1480 \\
& \quad \text { reflections } \\
& \theta=2-25^{\circ} \\
& \mu=0.55 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Transparent block, colourless } \\
& 0.25 \times 0.13 \times 0.08 \mathrm{~mm}
\end{aligned}
$$

Data collection

Stoe IPDS diffractometer
φ scans
Absorption correction: analytical

$$
\begin{aligned}
& 2569 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.097 \\
& \theta_{\max }=25.4^{\circ} \\
& h=-13 \rightarrow 13 \\
& k=-11 \rightarrow 11 \\
& l=-28 \rightarrow 28
\end{aligned}
$$

(ABST in PLATON; Spek, 2000)
$T_{\text {min }}=0.922, T_{\text {max }}=0.979$
18023 measured reflections
4495 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
$w R\left(F^{2}\right)=0.062$
$S=0.80$
4495 reflections
281 parameters

H atoms were placed geometrically and refined with a riding model.

Data collection: EXPOSE in IPDS (Stoe \& Cie, 1997); cell refinement: CELL in IPDS; data reduction: INTEGRATE in IPDS; program(s) used to solve structure: SIR97 (Altomare et al., 1998); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL.

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Bell, W. L., Curtis, C. J., Miedaner, A., Eigenbrot, C. W. Jr, Haltiwanger, R. C., Pierpout, C. G. \& Smart, J. C. (1988). Organometallics, 7, 691-695.
Burman, J. A., Hays, M. L., Burkey, D. J., Tanner, P. S. \& Hanusa, T. P. (1994). J. Organomet. Chem. 479, 135-139.
Bruker (1998). SHELXTL. Version 5.1. Bruker AXS, Karlsruhe, Germany.
El Mouatassim, B., Elamouri, H., Vaisserman, J. \& Jaouen, G. (1995). Organometallics, 14, 3296-3302.
Lai, R., Bousquet, L. \& Heumann, A. (1993). J. Organomet. Chem. 444, 115119.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2000). PLATON. Version of January 2000. Utrecht University, The Netherlands.
Stoe \& Cie (1997). IPDS Software. Version 2.83. Stoe \& Cie, Darmstadt, Germany.

